

Lecture 10: Cofibration

A map $i:A\to X$ is said to have the homotopy extension property (HEP) with respect to Y if for any map $f:X\to Y$ and any homotopy $F:A\times I\to Y$ where $F(-,0)=f\circ i$, there exists a homotopy $\bar F:X\times I\to Y$ such that

$$\bar{F}(i(a),t) = F(a,t), \quad F(x,0) = f(x), \quad \forall a \in A, x \in X, t \in I.$$

A map $i: A \rightarrow X$ is called a cofibration if it has HEP for any spaces.

The notion of cofibration is dual to that of the fibration: fibration is defined by the HLP of the diagram

If we reverse the arrows and observe that $Y \times I$ is dual to the path space Y^I via the adjointness of $(-) \times I$ and $(-)^I$, we arrive at HEP

Let $f: A \to X$. We define its mapping cylinder M_f by the push-out

The mapping cylinder topology (i.e. the push-out topology) of M_f says that a map $g: M_f \to Z$ is continuous if and only if g is continuous when it is restricted to $X \times \{0\}$ and to $A \times I$.

There is a natural map $j: M_f \to X \times I$ induced by

$$X \times \{0\} \to X \times I$$
, $f \times 1: A \times I \to X \times I$.

Lemma

The HEP of $i:A\to X$ is equivalent to the property of filling the commutative diagram

Let $i:A\to X$ and $j:M_i\to X\times I$ be defined as above. Then i is a cofibration if and only there exists $r:X\times I\to M_i$ such that $r\circ j=1_{M_i}$.

Let $i: A \to X$ be a cofibration. Then i is a homeomorphism to its image (i.e. embedding). If we work in $\underline{\mathscr{T}}$, so A, X are compactly generated weak Hausdorff. Then i has closed image (i.e. closed inclusion).

Remark

A cofibration is not closed inclusion in general.

An example is $X = \{a, b\}$ having two points with the trivial topology and $A = \{a\}$ is one of the point.

7911-

Consider the following commutative diagram

This implies that M_i is homeomorphic to its image $j(M_i)$. Consider

$$\begin{array}{ccc}
A & \longrightarrow & M_i \\
\downarrow i & & \downarrow j \\
X & \longrightarrow & X \times I .
\end{array}$$

Since $A \to M_i$, $M_i \to X \times I$, $X \to X \times I$ are all embeddings, so is $i: A \to X$.

Assume now that $A, X \in \underline{\mathscr{T}}$ are compactly generated weak Hausdorff. Then the image of $j: M_i \to X \times I$ is

$$j(M_i) = (j \circ r, 1)^{-1} (\Delta_{X \times I})$$

where $\Delta_{X\times I}$ is the diagonal, hence closed subspace of $(X\times I)\times (X\times I)$. Therefore j is a closed inclusion. Since $A\to M_i, X\to X\times I$ are also closed inclusion, so is $i:A\to X$.

Let A be a closed subspace of X. Then the inclusion map $i: A \subset X$ is a cofibration if and only if $X \times \{0\} \cup A \times I$ is a retract of $X \times I$.

Proof.

If *i* is closed, then M_i is homeomorphic to the subspace $X \times \{0\} \cup A \times I$ of $X \times I$.

Remark

If $A \subset X$ is not closed, then the mapping cylinder topology for M_i and the subspace topology for $X \times \{0\} \cup A \times I$ may not coincide.

Example

The inclusion $S^{n-1} \hookrightarrow D^n$ is a cofibration.

 \boxtimes : $D^n \times \{0\} \cup S^{n-1} \times I$ is a retract of $D^n \times I$

Let $f: A \to X$ be any map. Then the closed inclusion

$$i_1: A \to M_f, \quad a \to (a,1)$$

is a cofibration.

Example

The inclusion $A \to A \times I$, $a \to a \times \{0\}$, is a cofibration.

In fact, we can view it as

$$A \rightarrow M_{1_A}$$

where $1_A:A\to A$ is the identity map.

Let $i:A\to X$ be a cofibration, $f:A\to B$ is a map. Consider the push-out

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow i & & \downarrow j \\
X & \longrightarrow & Y
\end{array}$$

Then $j: B \to Y$ is also a cofibration. In other words, the push-out of a cofibration is a cofibration.

Let $i: X \to Y$ and $j: Y \to Z$ be cofibrations. Then $j \circ i: X \to Z$ is also a cofibration.

If $i:A\to X$ is a cofibration and A is contractible, then the quotient map $X\to X/A$ is a homotopy equivalence.

Let $A \subset X$ and $B \subset Y$ be closed inclusions which are both cofibrations. Then the inclusion

$$X \times B \cup A \times Y \subset X \times Y$$

is also a cofibration. As a consequence, $A \times B \to X \times Y$ is a cofibration.

Let $f: A \to X$ be a map. Consider the diagram of mapping cylinder

$$\begin{array}{ccc}
A & \xrightarrow{i_0} & A \times I \\
\downarrow^f & & \downarrow \\
X & \longrightarrow & M_f .
\end{array}$$

There is a natural commutative diagram

Here
$$i_1(a) = (a, 1), r(a, t) = f(a), r(x, 0) = x$$
.

Theorem

The map $r: M_f \to X$ is a homotopy equivalence, and $i_1: A \to M_f$ is a cofibration. In particular, any map $f: A \to X$ is a composition of a cofibration with a homotopy equivalence.

This theorem says every map is equivalent to a cofibration in the homotopy category.

Let $i: A \to X, j: A \to Y$ be cofibrations. A map $f: X \to Y$ is called a cofiber map if the following diagram is commutative

A cofiber homotopy between two cofiber maps $f, g: X \to Y$ is a homotopy of cofiber maps between f and g. Cofiber homotopy equivalence is defined similarly.

The following is the cofibration analogue of that for fibrations.

Proposition

Let $i: A \to X, j: A \to Y$ be cofibrations. Let $f: X \to Y$ be a cofiber map. Assume f is a homotopy equivalence. Then f is a cofiber homotopy equivalence.

Cofiber exact sequence

Now we work with the category $\underline{\mathscr{T}_{\star}}$ and $\underline{h}\underline{\mathscr{T}_{\star}}$. All maps and testing diagrams are required to be based.

Definition

A based space (X, x_0) is called well-pointed, if the inclusion of the base point $x_0 \in X$ is a cofibration in the unbased sense.

Let $(X, x_0) \in \underline{\mathscr{T}_{\star}}$. We define its (reduced) cone by

$$C_{\star}X = X \wedge I = X \times I / (X \times \{0\} \cup x_0 \times I)$$
.

If X is well-pointed, then the embedding $i_1:X\to C_\star X$ where $i_1(x)=(x,1)$ is a cofibration.

Let $f:(X,x_0)\to (Y,y_0)\in \underline{\mathscr{T}_{\star}}$. We define its (reduced) mapping cylinder by

$$M_{\star f} = M_f / \{x_0 \times I\}.$$

If (X, x_0) is well-pointed, then the quotient $M_f \to M_{\star f}$ is a homotopy equivalence.

Given $f: X \to Y$ in $\underline{\mathscr{T}_{\star}}$, we define its (reduced) homotopy cofiber $C_{\star f}$ by the push-out

$$\begin{array}{ccc}
X & \xrightarrow{i_1} & C_{\star}X \\
\downarrow^f & & \downarrow^f \\
Y & \xrightarrow{j} & C_{\star f}
\end{array}$$

If *X* is well-pointed, then $j: Y \to C_{\star f}$ is also a cofibration.

above maps by

The quotient of $C_{\star f}$ by Y is precisely ΣX . We can extend the

$$X \longrightarrow Y \longrightarrow C_{\star f} \longrightarrow \Sigma X \longrightarrow \Sigma Y \longrightarrow \Sigma C_{\star f} \longrightarrow \Sigma^2 X \longrightarrow \cdots$$

A sequence of maps in $h \underline{\mathscr{T}_{\star}}$

$$\cdots \to X_{n+1} \to X_n \to X_{n-1} \to \cdots$$

is called co-exact if for any $Y \in \underline{\mathbf{h}\mathscr{T}_{\star}}$, the following sequence of pointed sets is exact

$$\cdots \rightarrow [X_{n-1},\,Y]_0 \rightarrow [X_n,\,Y]_0 \rightarrow [X_{n+1},\,Y]_0 \rightarrow \cdots$$

Theorem (Co-exact Puppe Sequence)

Let $f: X \to Y$ in $\underline{\mathscr{T}_{\star}}$ between well-pointed spaces. The following sequence is co-exact in $\underline{\mathbf{h}\mathscr{T}_{\star}}$

$$X \longrightarrow Y \longrightarrow C_{\star f} \longrightarrow \Sigma X \longrightarrow \Sigma Y \longrightarrow \Sigma C_{\star f} \longrightarrow \Sigma^2 X \longrightarrow \cdots$$

Lemma

Let $f:A\to X$ be a cofibration between well-pointed spaces. Then the natural embedding

$$C_{\star}(A) \to C_{\star f}$$

is a cofibration.

Proof.

This follows from the push-out diagram

$$\begin{array}{ccc}
A \longrightarrow C_{\star}(A) \\
\downarrow & \downarrow \\
X \longrightarrow C_{+f}
\end{array}$$

Let $f:A\to X$ be a cofibration between well-pointed spaces. Then the natural map

$$\bar{r}: C_{\star f} \to X/A$$

is a homotopy equivalence. In other words, the cofiber is homotopy equivalent to the homotopy cofiber.

Proof.

Since $C_\star(A) \to C_{\star f}$ is a cofibration and $C_\star(A)$ is constractible, the quotient

$$C_{\star f} \rightarrow C_{\star f}/C_{\star}(A) = X/A$$

is a homotopy equivalence.

Theorem

Let $i:A\to X$ be a cofibration between well-pointed spaces. The following sequence is co-exact in $\underline{\mathbf{h}\mathscr{T}_{\star}}$

$$A \longrightarrow X \longrightarrow X/A \longrightarrow \Sigma A \longrightarrow \Sigma X \longrightarrow \Sigma(X/A) \longrightarrow \Sigma^2 A \longrightarrow$$